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Abstract. Accurate m_asurement of single-trial responses is key to a definitive use of complex

electromagnetic and hemodynamic measurements in the investigation of brain dynamics. We

developed the multiple component, Event-Related Potential (mcERP) approach to single-trial

response estimation _o improve our resolution of dynamic interactions between neuronal
ensembles located in different layers within a cortical region and/or in different cortical regions.

The mcERP model asserts that multiple components defined as stereotypic waveforms comprise

the stimulus-evoked response and that these components may vary in amplitude and latency

from trial to trial. Maximum a posteriori (MAP) solutions for the model are obtained by

iterating a set of equalions derived from the posterior probability. Our first goal was to use the

mcERP algorithm to analyze interactions (specifically latency and amplitude correlation)

between responses in different layers within a cortical region. Thus, we evaluated the model by

applying the algorithr_ to synthetic data containing two correlated local components and one

independent far-field component. Three cases were considered: the local components were

correlated by an inter;ction in their single-trial amplitudes, by an interaction in their single-trial

latencies, or by an interaction in both amplitude and latency. We then analyzed the accuracy

with which the algorithm estimated the component waveshapes and the single-trial parameters as

a function of the linearity of each of these relationships. Extensions of these analyses to real

data are discussed as v'ell as ongoing work to incorporate more detailed prior information.

INTRODUCTION

Electromagnetic and hemodynamic measurements of brain activity are recorded to

investigate neurological processing of sensory stimuli with the assumption that these

signals will yield insight into the brain dynamics of sensation. These recorded signals

represent the superpcsition of activity from numerous neural sources on the detector

array. Conventionally, the subject is exposed to repeated presentations or trials of the
same stimulus, and tl_e recorded signals are averaged across these trials generating the



average event-related potential (ERP). Although this technique improves signal-to-
ratio, averaging implicitly assumes that an invariant, stereotypical waveform

represents the single-lrial ERP. This prevents researchers from asking questions about
the trial-to-trial variability of the evoked response, about dynamic interactions

between stimulus-evoked components, and stimulus-induced modulation of ongoing

EEG rhythms.
The multiple component Event-Related Potential (mcERP) model was introduced

as an alternative techr_ique for examining these signals. The model states that multiple

components generate the signal and that each of these components may vary in

amplitude and latency from trial to trial. Furthermore, the mcERP model makes no
assumptions about the interdependency of the different components. Thus, this model
estimates the different components generated in response to a stimulus presentation,

quantifies single-trial variability in the evoked potential (Truccolo 2002), and permits

exploration of dynamic interactions between related components. Anatomical studies
show connectivity between different cell populations within and between areas, and

electrophysiological data based on average responses from awake and anesthetized

animals also support these ideas (Schroeder et al. 1998; Nowak and Bullier 1997;

Schmolesky et al. i998). The mcERP model has the potential to show the

spatiotemporal profile of activation on a single-trial basis and may reveal information

about parallel and ser:al processing by sensorineural circuitry.
An interesting basic circuit suggested by the anatomical and electrophysiological

data is the projection from the granular lamina to the supragranular laminae of V1.

The granular lamina of V I (lamina IV) represents the primary thalamorecipient layer
of cortex in the visual system, and the supragranular laminae of V1 receive inputs

from the granular layer before propagating them to the downstream visual areas. The
anatomical and electrophysiological evidence suggests that there may exist a

relationship between the amplitudes and latencies of responses simultaneously
recorded from these different layers. The mcERP algorithm can address this issue

because it estimates lhe components from the recorded signals and it also estimates

their single-trial characteristics. Correlations in the trial-to-trial variability between

two components would suggest dynamic coupling between those two

neuroelectrophysiological phenomena.
Prior to applicatk.n of any new model to real data however, it is helpful to

characterize the perfcrmance of the algorithm with a known set of solutions. In this

paper, the performance of the mcERP algorithm is evaluated on numerous synthetic
data sets consisting c,f three physiological components. Each data set contains two

hypothetical components that display latency coupling, amplitude coupling, or both
latency and amplitude coupling. The accuracy of the algorithm in estimating the three

hypothetical components is examined by comparing the estimated parameters of the
mcERP model with the original parameters utilized in generating the synthetic data.

Also, the implications of these simulations are discussed with respect to application of

the algorithm to real cata and with respect to possible future refinements of the model.



METHODS

The mcERP Model and Algorithm

The mcERP mod,_l (Knuth et al. 2001, Knuth et al. in preparation) describes

recorded neuroelectr_physiologic activity as being generated by a set of neural

ensembles each responding with a stereotypic activation pattern. The stereotypic

activity is a temporal pattern of electrical activity that we will described as a

component s,(t), whe:e s is the component's waveshape across time t and n is an index
for a particular component. Second, amplitude and latency variability in the evoked

response occurs from trial to trial (Truccolo 2002), and the mcERP model modifies the

component waveshar, e sn(t) with a trial-specific amplitude scaling factor anr and a

trial-specific latency shift z,,r, where n still denotes a particular component and r

denotes a specific trial. And third, since multiple detectors (referred to as electrodes
from now on) are often used, a coupling matrix C,,, is added to the model to describe

the relation between a particular electrode m and a particular component n. This is

important since several detectors may record a particular component differentially.

These aspects of the racERP model can be written mathematically as:

N

Xrar(t ) = ZCmnOl. nrSn(t--T, nr ) -.1- ]]mr(t) , (1)

rt=l

where n indexes the _/Vcomponents, Cm. denotes the coupling between the m `_detector
th

and the rl th component, et.r is the amplitude scaling of the n th component during the r

trial, z.r is the latency shift of the rlth component during the r th trial, s.(t) is the

waveshape of the rlth -omponent, and rlmr(t) is the unpredictable signal recorded in the
m th detector during the r th trial.

The most probable set of parameters that satisfy the mcERP model expressed in (1)
can be calculated from the maximum a posteriori (MAP) solution of the posterior

probability, The derivation of the equations governing the most probable parameters

for (1) begins with Bz,yes' Theorem, which states that the posterior probability

p( _odel l data, I)= p(data i model, I) p(model t I) (2)
p(aataI I)

where p(o) is the prot:ability and I is any prior information, The p(datatmodel,1) in (2)
is the likelihood of the data given the model, the p(datall) is called the evidence or the

prior probability of t!ae data, p(modeI[1) is called the prior probability of the model,
and the left-hand side of (2) is the called the posterior probability, which is the

probability that a given set of model parameters is consistent with the data and the
information. Bayes' Theorem describes how the prior probability of the model

p(modelll) is modifie:l by new information such as data. Substituting the parameters
of the mcERP model nto (2), the posterior probability becomes

p(x(t) I C, s(t), a, "r,I) p(C, s(t), a, x II) (3)
p(f,s(t),_t,'rlx(t),l) = p(x(t) l 1)



where the bold terms indicate the entire set of a particular parameter. Since the

evidence p(x(t)[1) is constant as the model parameters vary, the posterior probability

can be written

p(C,s(t),,_, xlx(t),I) oc p(x(t)[C.s(t),a,'c,I)p(C,s(t),a, xlI) (4)

with a proportionality constant equal to the inverse of the evidence. Next, the prior

probability of the mo]lel can be factored and expressed as the product of the individual

probabilities as follows:

p(C, s(t), a, x I x(t), I) _: (5)
p, x(t)I C, s(t), a, "r, I) p(CI 1) p(s(t) lI) p(a l I) p(T l I)

The p(a[1) and the p(_l/) are assigned uniform distributions and given ranges that are

physiologically realizable. A Gaussian likelihood is assigned to (5) based on the

principle of maximum entropy (Sivia, 1996; Jaynes, unpublished) resulting in

p(C, s(t), a, x, o Ix(t), I)

(2XCy2)'-_m' Exp[- 2-_ QI p(cy [l)p(C]I)p(s[I) (6)

where c; is the expected variance between the predictions and the mean, p(c;{/) is the

prior probability of cy, and Q represents the sum of the square of the residual between

the data and model. Q is derived from (1) as

'2 = x,,, (t) - C,,, ct,, s, (t -x ,, , (7)
rn=l r=l n=l

where M is the totaE number of detectors or electrodes, R is the number of trial

presentations of a stimulus, T is the number of the data points sampled. A Jeffrey's

prior is assigned to o such that p(cy{/)=_ -1, and the joint posterior probability of (6) is

marginalized over all values of g giving the marginal joint posterior probability

-At/CT--
2

PC, s(t), a, x I x(t), I) oc Q p(C II) p(s [ I). (8)

The derivation continues with the assignment of prior probability for the coupling

matrix and the component waveshapes. The solution of the electromagnetic forward

problem could be u_ed to generate knowledge about the source-detector coupling
(Knuth, 1998; Knuth & Vaughan, 1999), but for simplicity only uniform prior

probabilities were assigned to p(C[1) and p(s[1). When is this done and when the

natural logarithm is taken, the marginal joint posterior probability becomes

In P = - MRT In Q + const, (9)
2

where P isp(C,s(t),et,_lx(t),l).
The most probabh_ set of parameters for (9) are then determined by solving the

expression for the maximum a posteriori (MAP) solution of the posterior probability

by setting the derivative of the posterior with respect to each of the model parameters
to zero. The resulting equations are not shown here but are found in Knuth et al.



(2001, in preparatioJ0. These equations are then incorporated into an iterative

algorithm that initially assumes the existence of a single component within the data

and refines the parameters sl(t), a_r, zlr, and C,,I until there is less than 1% change in

the waveshape of the s'i(t) or until 15 iterations are complete. After estimating a single

component, the residt_al signal is calculated as

N

residual m = x _r (t ) - _ C_,c_, s , (t --Z,r). (10)
rt=l

If the residual displays structure across trials, the mcERP algorithm is applied again to
estimate a second component sz(t) and its related parameters. In this second set of

iterations, both sl(t), s'2(t), and their related parameters are updated. This process of

adding components continues until the user determines that the residual signal
contains no structure across trials.

The Synthetic Data

Synthetic data wine created to evaluate the performance of the algorithm on data

containing two interacting neural sources. The structure of the synthetic data
simulated field poter:tial recordings from a linear, 15-channel multielectrode array

spanning laminae 1 through 6 of macaque V1 during presentation of a red flash of

light. In each simulated case, 50 trials of simulated data for each of the 15 channels of
the electrode array we re generated. Three separate components were specified (Figure

IA): (i) Component 1 resembled activation of a spiny stellate cell population in

Component 3

i ! i ! +'-,,! ! : i :

V1

C'on_ onent t

o 5a ioo _o _ 25O _eX

Figure 1. Synthetic data created to evaluate the mcERP algorithm was based on field potential

recordings from a linear, nultielectrode array positioned to span laminae 1 through 6 simultaneously.
A. Component 1 of the synthetic data represents activation of the lamina 4 spiny stellate cells by a

thalamic input. Compone _t 2 represents the subsequent activation of pyramidal cells in the lamina 2 or
3, and component 3 is a far-field source whose component is recorded approximately equally by all

electrode channels. B. ","he spatial distribution of the three components is observed in their linear

summation at every electrode channel. Component 1 is located between channels 9 and I0, component
2 is located between chaanels 4 and 5, and component 3 is seen nearly equally by each electrode
channel.



granularlamina4 b_ a thalamicinput; (ii) Component2 representedactivationof
pyramidalcellsin supragranularlamina2 or 3 byagranularinputsuchascomponent
l; and(iii) Componert3 is theelectricalactivitygeneratedbyafar-fieldsource.The
temporalpatternsof thesecomponentswerechosento resemblesignalsobservedin
VI in responseto a red flashof light. A couplingmatrixspecifiedthe relative
positioningof the differentsourcessuchthat component1 was locatedbetween
channels9 and 10, component2 was locatedbetweenchannels4 and 5, and
component3 wasseennearlyequallyacrossthe channelsof the electrodearray
(Figure1B). Low-frequencynoisewitha spectrumof 1/fwasaddedto thedata,and
thestandarddeviatior_of thenoisewasspecifiedas0.063sothatthesignal-to-noise
ratio (SNR) of the smallestcomponent(component2) was 1.1 as given by
SNR=(y2component/Cy2nois, where o denotes the standard deviation across time.

Components 1 and 2 of the synthetic data were coupled so that component 1 drives

component 2 via a feedforward connection. We studied four different

implementations of such a relationship. Method 1 specified a relationship between the

latency shifts of components 1 and 2 so that when the first component was delayed, so
was the second, and when the first component was early, so was the second. The

degree to which the sources were coupled was controlled by a coupling parameter k

(not to be confused with the coupling matrix). When k=-0, the sources are uncoupled
and the latency of component 2 jitters independent of component 1. When k=-l, the

sources are completely coupled so that component 2 follows component 1 precisely.

This is written in equation form as

z2 =(l_k)N(O, o j,_,)+ kzl_ ' (11)

where z/r and Z:r are _he latency shifts of the first and second components respectively
in the ra' trial, k is a constant that varies the coupling between the components,

N(O, oil,,) represents a random number sampled from a normal distribution with mean

equal to 0 and standard deviation equal to ojtat, and Zlr is the latency shift of the first
component in the r_ trial. Single-trial synthetic data were generated for the 15
electrode channels during 50 trials of the stimulus. The amplitude scaling factors of

the three components in each trial were independent of each other and defined from a

randomly sampled lo_ormal distribution with a sample mean p-amp= 1.0 and sample

standard deviation cr_,p = 1.0. The latency shifts of component 1 and component 3

were independent and defined from a normal distribution N(O, 10.0 milliseconds) with

sample mean lato, = 0.0 milliseconds and sample standard deviation _l,,t = 10.0
milliseconds. Eleven separate cases were explored with k = {0.0, 0.1, ..., 1.0}. In

each case, %t,, was eqaal to 10.0 milliseconds.
Method 2 specified a coupling between the amplitudes of components 1 and 2.

This relation was given by:

ot_=(1-k)×2 N_l'°.... )+k 2 (12)
- 1+ e -b(a'r-l) '

where ct/r and ot2_are the amplitude scaling factors of the first and second components

respectively in the rth trial, k is a constant that varies the coupling, N(1,_jamp)

represents a random r umber from a normal distribution with sample mean equal to 0



andsamplestandardcieviationequaltoGg.,,,,,p,andCtJris theamplitudescalingfactorof
thefirst componentir_ther th trial. The first term in the sum on the right-hand side of

(12) represents the independent lognormal amplitude jitter of component 2, whereas
the second term repre:_ents a sigmoid function whose rise is varied by b (Figure 2). As

in Method 1, single-trial data for 15 electrode channels were generated across 50 trials.

The latency shifts of the three components were independent and chosen randomly

from N(O, 10. 0 milliseconds). The amplitude scaling factors of components 1 and 3

were also independen: and chosen from a lognormal distribution with a sample mean

gamp = 1.0 and sample standard deviation C_amp= 1.0. Forty different simulations were

performed using this method with Gja,_p= 0.75, b -- {2°, 2 l, 22, 23}, and k ; {0.1, 0.2,

..., 1.0} for each value of b. Since a negative value for a is not physiologically

realizable, each a2r value was adjusted by (1-<a2>), where ct2 represents all amplitude

scaling factors across R trials and <> represents the mean of that sample.
Method 3 combined elements of the two previous methods so that the components

were coupled both b} latency shifts and amplitude scaling factors. The latency and

amplitude relations were specified by (11) and (12) respectively, and the single-trial

data were again generated for 15 electrode channels during 50 trial presentations of the
stimulus with the single-trial amplitudes and latencies of components 1 and 3

determined as before. The latency and amplitude relationships between components 1

and 2 were calculated with Ght = 10.0 milliseconds, _j_mp= 0.75, b = {2 4, 2 "3, 2 -2, 2 -I,

2 °, 2 2, 23}, and k = {').0, 0.1, ..., 1.0} for each value of b resulting in 77 simulated

cases.

Finally, Method 4 was identical to Method 3 except that the stereotypic waveshape

of component 2 was altered to be identical to component 1. The latency and
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Figure 2. Amplitude relati_,nfunction used in the simulated cases studying amplitude relation alone and
those studying simultaneocs amplitude and latency relation. As the value of b is increased, the relation
varies from linear to sigmodal.



amplituderelationsv,erespecified with %/at = 10.0 milliseconds, oj_,,p = 0.75, b = {2 "3,

2 "t, 2°, 21, 22, 23}, and k = {0.0, 0.1, ..., 1.0} for each value of b. Thus sixty-six
different combinations were simulated.

Evaluation of Algorithm Performance

The mcERP algorithm performance was evaluated with several different measures

of accuracy. First, the Amari error (Amari et al. 1996) was calculated to quantify the

algorithm's ability tc separate each component comprising the synthetic data. The
basis of this error is derived from the linear mixing model given by

x=Cs, (13)

where x is a matrix of the signals recorded in each detector across time, C is the

mixing (or coupling) matrix describing the component-detector relationship, and s is a
matrix of the component waveshapes across time. The linear mixing model of (13)

possesses two indeterminacies because the coupling coefficients in matrix C and the

component waveshapzs in matrix s can be rescaled by a diagonal scaling matrix E

x = CZZ -j s, (14)

and the order of the sources can arbitrarily be changed by a permutation matrix FI

x-- CZ FI FI -_E-Is. (15)

Thus, the linear mixirg model can be rewritten as

x=(CE FI)(H-'E-'s) (16)

Expression (16) asserts that estimates of the coupling matrix and the component
waveshapes will be _s accurate as a scaled permutation of the original and may be
written as

_ = M-ls. (17)

or

& = CM. (18)

where M is a matri> describing the relation between the original matrix and the

estimated version. A perfect estimate of the coupling matrix or the component

waveshapes would result in Mbeing a scaled permutation matrix equivalent to M=EFI.
SolvingThus, studying M yields insight into the accuracy of the estimated quantity.

forM q in (17) gives

M-' =(_srXssr) -l (19)

and in (18) yields

:(:
where T denotes the transpose of the marked matrix. The deviation of M "j from a

scaled permutation m_:trix is found by the computing the Amari error
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where A we set equal to M "1, i indexes the rows of matrix A,j indexes the columns of
matrix A, n is the total number of components, k is the index of the position of the

maximal value, and the denominator normalizes the error. Either (19) or (20) can be
used to calculate the Amari error; (19) was used to calculate the Amari error for

relationship methods 1, 2, and 3, and (20) was used to evaluate the Amari error in

relationship method 4 because the quantity (ssr) 1 is singular when components 1 and

2 have the same waveshape.

Comparing the estimated component waveshapes to the actual component
waveshapes was the _econd tool used to evaluate the performance of the algorithm.

The root-mean-square (RMS) error was calculated as follows:

_' (t)j (t) - s j
J (22)

Ewave =

wherej indexes a particular component, T is the total number of time samples, and _'

denotes the estimated sources _ after they have been scaled and permuted so as to be

comparable to the original sources.
Accuracy of the latency shifts and amplitude scaling factors was examined by

calculating the average absolute difference (average ABS error) between the original
values and the estimated ones. The following two equations define these errors for

each componentj across all R trials:
1 .9

E_mp 2= -- ctj, --6jr (23)
R r=l

1 R

E/o, = -___ "_jr-z'j_. (24)

ABS errors below the standard deviation of the variability (Osamp=l.O and ojlat=lO.O

milliseconds) signify _Lnimprovement in estimation over that of standard averaging.

RESULTS

Performance was first evaluated for synthetic data generated using coupling method

1. Each measure of performance showed that strong latency coupling does not hamper
mcERP's ability to estimate the parameters. For each value of k, the Amari error

(Figure 3A) remains below 0.06, which indicates less than about 1% error in
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Figure 3. The resulting ,kmari error when the mcERP algorithm is applied to synthetic data with a
latency relation alone (A) and with an amplitude relation alone (B).

separation. Although not shown, the component RMS error is below 10% and does
not illustrate a trend _vith increasing coupling. Finally the average absolute errors of

the amplitude scaling factors and the latency shifts are well below the standard

deviation of the original data.
Method 2 related the amplitude of component 2 to the amplitude of component 1

via a sigmoid function (12) with a parameter b, which controls the slope of the
transition (larger b gives a larger slope). Both the transition parameter b (Figure 2)

and the coupling constant k were varied. Figure 3B illustrates the Amari error for

method 2. Again the Amari errors were relatively constant as a function of b and k,

and were less than 0.06. The other parameters were also well estimated.
Method 3 combined the aspects of methods 1 and 2 such that simultaneous

amplitude and latency relations were considered. Again, the mcERP algorithm
estimated the components and their single-trial parameters accurately. Figure 4A
shows that the Amari error does not vary across k and b.

The final test of the mcERP algorithm studied synthetic data whose component 1

and component 2 had the identical waveshapes and were related both in an amplitude

and latency. Table 1 lists the Amari errors for all of the different cases considered in
this block of simulations; there are only two cases where the Amari error falls below

0.06 indicating separation quality was poor in most cases. Figure 4B illustrates a

surface plot of these _alues, and shows that as strength of the interaction k increases,
the Amari error also ncreases. In contrast, as the amplitude interaction varies from

linear (small b) one dgmoid-shaped (large b), the Amari error does not follow an

appreciable pattern. Examining the component waveshape, amplitude scaling factor,

and latency shift errors (all not shown), several different relationships were observed.

First, component 1 waveshape error increased with increasing k while remaining
relatively constant wilh varying b. Component l's estimated amplitude scaling factor
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Figure 4. mcERP algorith n performance on synthetic data containing both an amplitude and a latency
relation between components 1 and 2. Panel A shows the Amari error when the related components'

waveshapes differed, and B shows the Amari error when the components' waveshapes were identical.

error was largest wht n both k and b were small, and estimated latency shift error

decreased with increasing k while remaining constant with varying b. Second,

component 2's RMS waveshape error, average ABS amplitude scaling factor error,

and average ABS latency shift error all increased with increasing k and all increased

slightly with increasing b. Finally, the accuracies of component 3 estimates (not

shown) exhibit no re ation to both k and b and were equivalent to those in other

simulations for all practical purposes.

Samples of the results for two different cases are shown in Figure 5 and Figure 6.

Figure 5A-C illustra'es an example from method 3 where the waveshapes of

components are differ,rot, and where b = 8.0 and k = 1.0. The estimated component

waveshapes, their spatLal distributions, amplitude scaling factors, and latency shifts are

shown with respect to, their original counterparts. Figure 6A-C shows a case from

relation method 4 where the waveshapes of components 1 and 2 were identical, and

where b = 8.0 and k = 1.0. In this case, the component waveshapes and their spatial

Table 1. Amari error when the mcERP algorithm is applied to synthetic data where components 1 and
2 have the same waveshapc and an amplitude and latency, relation.

k value b value
0.2500 0.50 1.00 2.00 4.00 8.00

0.0
0.I
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0934 0.0461 0.1015 0.0835 0.0749 0.0438
0.0773 0.0714 0.0765 0.0491 0.0790 0.0923
0.1081 0.0771 0.0942 0.0888 0.0966 0.0482
0.0350 0.0662 0.0738 0.0744 0.0746 0.1077
0.0931 0.0605 0.1075 0.1205 0.1037 0.1431
0.1160 0.0949 0.0930 0.1407 0.1379 0.1452
0.1200 0.1286 0.1399 0.1226 0.1360 0.1742
0.1431 0.1574 0.1737 0.1662 0.1840 0.2227
0.1521 0.1664 0.1848 0.1805 0.2104 0.2241
0.1593 0.1828 0.1968 0.2098 0.2360 0.2350
0.1641 0.1908 0.2112 0.2342 0.2428 0.2298



distributions are not well estimated because the components are not separated. In

addition, method 4 results in greater errors in the estimates of the single-trial features

as observed in Figure 6B and C in comparison to those illustrated in Figure 513 and C.

DISCUSSION

The mcERP model describes the single-trial event-related potential as the linear
summation of multiple components each described by a stereotypic waveshape and

possessing a trial-specific amplitude and latency. Application of Bayes' theorem to
the model allows development of an algorithm that gives the most probable set of

parameters to satisfy the model. The advantage of utilizing Bayes' theorem is that

algorithm failure results only from model inadequacies, inappropriate or insufficient

prior information abeut the situation, or insufficient data. In many cases, model

inadequacies may be identified by testing the algorithm on synthetic data prior to

application to real data.
The performance of tl_e algorithm on data with interacting components is critical as

dynamical coupling between real cortical components is expected. Furthermore, such
coupling between components will yield insights into sensory processing within and

between cortical areas In this paper, the mcERP algorithm was tested using numerous

synthetic data sets that reconstruct four hypothetical relations between granular and

supragranular components when evoked by an external stimulus. Amplitude-

amplitude and latency-latency interactions between two components were found not to
affect the ability of the algorithm to identify the component waveshapes, their spatial

locations, or their single-trial amplitude and latency characteristics. These latency-

latency results were e_pected as previous studies of the mcERP algorithm found that
accurate identification of three components with independent amplitude variability but

no latency variability was possible (Knuth et al. in preparation). This is because a lack

of latency variability ia the components can be described by (11) when "_r = 0 and k =
1.

The second set of simulations explored an amplitude interaction between two

components. A sigmoid relation was utilized because it provides a threshold and
saturation. The threshold of the sigmoid relation prevents occurrence of the driven

component when the driving component's activation level is below a given threshold.

The saturation of the sigmoid curve prevents a further increase in the driven

component's amplitude when all elements of the neuronal ensemble generating this
component are "recrt:ited." In this set of simulations, the algorithm accurately

estimated all model parameters.
Simultaneous amplitude and latency interactions between the granular and the

supragranular components were examined in the third group of simulations. Again,
the mcERP algorithm accurately estimated all parameters. We hypothesized that even

though the single-trial characteristics of components 1 and 2 were related, mcERP
succeeded in identification due to the fact that the waveshapes of the components were

different. To test this hypothesis, we performed the fourth set of simulations where

the waveshapes of the coupled components were identical. The quality of separation,
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Figure 5. mcERP algorithm estimates match the original synthetic data well. tn this case, the
waveshapes of components 1 and 2 are different, k = 1.0, and b = 8. 0. A. The component waveshapes
and their spatial distribut ons are plotted across electrode channels. The dotted lines in each plot
indicate the estimated con ponent, and the solid lines indicate the original waveshapes. The blue lines
are difficult to observe because the estimated components match the original ones well. B.

Comparison of the actual and estimated amplitude scaling factors. C. Comparison of the actual and
estimated latency timeshit:s. The dotted diagonal line denotes a perfect match between the actual and
the estimated values in both B and C.
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as measured by the A mari error, degrades as the strength of their interaction increases
but remains relatively unaffected by changes in the shape of the amplitude relation.

The amplitude scaling factor error and the latency shift error show an inverse

relationship between the two related components. Since there is considerable mixing
between these two components, this observation may indicate that the first of the two

related components estimated by the algorithm is better approximated than the second.

Indeed, the waveshapes for the highly coupled case in Figure 6 suggest that this is the

case. Together these findings indicate that a difference in the temporal activation

pattern of the comp_nent is crucial in separating strongly interacting components.
When the component waveshapes are the same, independent variation of the

amplitude and latency parameters of the components can assist the algorithm in

separating the components, but this is not typically sufficient to accurately estimate all

of the parameters.
Although several scenarios were considered, other interactions are possible. For

example, amplitude-atency couplings may exist so that a larger than average

amplitude of a component in a given trial may result in the earlier activation of a

second, dynamically coupled component. Investigating the effect of the spatial
distribution on the estimation of two dynamically coupled sources may comprise a

second study. Last, the degree to which differences in the waveshapes affect the

quality of separation night be explored.
By applying the m,-ERP algorithm to real data we expect to be able to characterize

the single-trial properties of these evoked responses, which will provide valuable

insights into the corti,:al processing of sensory stimuli. The results of the simulations
presented here sugge,:t that the mcERP algorithm will be able to distinguish between

spatially distinct neural ensembles generating differing component waveshapes despite
the fact that they may be interacting with one another. However, as the waveshapes of

the two components become more similar, we expect the quality of separation to

degrade. This scenario may be addressed by incorporating more prior information into
the mcERP algorithrr by adopting a sparse prior on the coupling matrix to enforce

spatial localization of the sources. Such a prior would also be able to offset the effects
of real variations in t_e recording apparatus such as impedance mismatches between

electrodes. Lastly, we currently employ a crude and rather subjective stopping
criterion, which coulC be substantially improved by deriving a criterion that is based

on the principles of model selection. This would help to avoid possibly both over-

and under-fitting of :he data. Regardless, the mcERP algorithm is performing as

expected and the resu ts of these simulations give us confidence the mcERP algorithm

will produce viable results when applied to real data.
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